error matrix造句
例句與造句
- An error matrix for accuracy assessment was then produced
之后我們制作了誤差矩陣來進(jìn)行誤差評(píng)估。 - The overall accuracy and kappa index are calculated by using the error matrix to check up the classification ’ s accuracy
為檢驗(yàn)分類精度,本文使用了誤差矩陣,計(jì)算了分類總精度和kappa指數(shù)。 - In this algorithm , the sharp features on a mesh model are located through analysis of quadric error matrixes of super - neighbor of vertices on the model , so that these features can be preserved during mesh simplification
通過分析網(wǎng)格模型中頂點(diǎn)超鄰域的二次誤差矩陣,對(duì)模型上的重要細(xì)節(jié)特徵進(jìn)行定位,實(shí)現(xiàn)了網(wǎng)格簡化過程中細(xì)節(jié)特徵的保持。 - Then the model errors of multi - input / multi - ourput systems are defined for the in the form of square sum of impulse response error matrix 2 - norm . the stability conditions are provided for these systems using dmc algorithm . 5 . the singular systems are different from general discrete systems
5 .由于離散廣義系統(tǒng)區(qū)別于一般離散系統(tǒng),對(duì)離散廣義系統(tǒng)特性進(jìn)行研究時(shí),僅僅考慮其穩(wěn)定性是不夠的,通常要考慮到其正則性,因果性和穩(wěn)定性( rcs ) 。 - In chapter 2 , author points out firstly that the elastic deformation of elastic units of a robot ' s wrist force sensor will be enlarged by the end - effector , the instruments and the work pieces , so the elastic deformation of the sensor will influence the location accuracy or kinetic accuracy of end point of a robot , under the condition of that the robot technology facing the developing of heavy load , light mass and high accuracy . it is discussed respectively that the relationship between the differential kinemics in the sensor ' s coordinate and the location accuracy or kinetic accuracy of the end point . error matrixes of location and kinemics of the end point are presented respectively based on the differential kinemics in the sensor ' s coordinate , and the on - line error compensation methods are introduced subsequently
第二章首先指出機(jī)器人腕力傳感器彈性體的彈性變形經(jīng)過機(jī)器人末端連桿、工具、工件等的放大后,會(huì)對(duì)機(jī)器人末端精確定位和運(yùn)動(dòng)產(chǎn)生的影響;然后分別研究了傳感器坐標(biāo)系內(nèi)的微分運(yùn)動(dòng)與機(jī)器人末端工件精確定位、運(yùn)動(dòng)的關(guān)系;在此基礎(chǔ)上,研究了基于腕力傳感器彈性體微分運(yùn)動(dòng)的機(jī)器人末端定位、運(yùn)動(dòng)誤差的誤差矩陣及其在線誤差補(bǔ)償方法;基于機(jī)器人動(dòng)力學(xué)的機(jī)器人末端定位、運(yùn)動(dòng)誤差的誤差矩陣及其在線誤差補(bǔ)償方法;最后,以puma型機(jī)器人為對(duì)象,給出了基于腕力傳感器內(nèi)微分運(yùn)動(dòng)的機(jī)器人末端定位、運(yùn)動(dòng)誤差及其在線補(bǔ)償方法的仿真實(shí)例:給出了基于機(jī)器人動(dòng)力學(xué)的機(jī)器人末端定位、運(yùn)動(dòng)誤差及其在線補(bǔ)償方法的仿真實(shí)例;仿真結(jié)果表明, 1 )基于腕力傳感器的機(jī)器人末端定位誤差在腕力傳感器允許的載荷下可達(dá)十分之幾毫米級(jí)。 - It's difficult to find error matrix in a sentence. 用error matrix造句挺難的
- Some modeling of maneuvering target tracking is introduced in this thesis , and current statistical model is used as a basic target model . the arithmetic of kalman filtering based on the model is listed . on the foundation of state vector optimal estimation error matrix theory , the arithmetic of optimal estimation is presented , and target tracking simulation is taken
本文首先介紹了幾種常用的機(jī)動(dòng)目標(biāo)跟蹤模型,并把現(xiàn)在較為常用的“當(dāng)前”統(tǒng)計(jì)模型作為本文研究的目標(biāo)模型,并列出了基于該模型下的卡爾曼濾波算法;此外,在狀態(tài)矢量最優(yōu)加權(quán)估計(jì)理論的基礎(chǔ)上,引入了目標(biāo)狀態(tài)最優(yōu)估計(jì)誤差協(xié)方差矩陣,提出了一種最優(yōu)加權(quán)估計(jì)算法,并進(jìn)行了目標(biāo)跟蹤仿真。 - And then , the error matrixes of location and kinemics of the end point , and the on - line error compensation method are given based on robot ' s dynamics . finally based on puma robot , three simulation examples are given respectively ; the first is about the location error and on - line location error compensation , the second is about the kinetic error and on - line kinetic error compensation , the third is about location and kinetic errors causing by robot ' s dynamics and the on - line error compensations . the simulation results show that : a ) location error of the end point based on elastic deformation of the sensor will be about millimeter ' s degree under the permitting load , b ) the on - line error compensation methods given are available
第三章首先概括了目前機(jī)器人連桿慣性參數(shù)識(shí)別的四種方法,總結(jié)這些方法的優(yōu)、缺點(diǎn);指出這些方法存在的問題是:或者需將機(jī)器人解體,不能在線進(jìn)行參數(shù)識(shí)別,或者不能給出機(jī)器人連桿獨(dú)立的慣性參數(shù)值,只能獲得慣性參數(shù)的組合值,而這些方法的共同問題是:不能考慮機(jī)器人連桿的關(guān)節(jié)特性;本章提出了一種基于腕力傳感器的機(jī)器人末端連桿慣性參數(shù)在線識(shí)別方法,給出了該方法的理論計(jì)算和推導(dǎo);研究提出了以腕力傳感器輸出為前提的、基于newton - euler動(dòng)力學(xué)的機(jī)器人動(dòng)力學(xué)正向、逆向遞推公式;針對(duì)機(jī)器人負(fù)載參數(shù)辨識(shí)必須在線、實(shí)時(shí)的特點(diǎn)提出了基于腕力傳感器的負(fù)載參數(shù)在線識(shí)別方法,給出了負(fù)載參數(shù)識(shí)別的步驟。 - The accurate float ambiguity solutions and their msem ( mean squared error matrix ) are obtained using several - epoch single frequency phase data . combining with lambda method , the new approaches can fix the integer ambiguities correctly and quickly using msem instead of the covariance matrix of the ambiguities
新方法只需要解算幾個(gè)歷元的單頻gps相位數(shù)據(jù),可以得到比較準(zhǔn)確的模糊度浮動(dòng)解及其相應(yīng)的均方誤差矩陣,用均方誤差矩陣代替協(xié)方差陣,結(jié)合lambda方法,可準(zhǔn)確快速地解算模糊度。